d89463fdf6bf4d62bfeb96ce0eea6e34

Subsampling Comparisons

[1]:
import rioxarray as rxr
import geopandas as gpd
from shapely import unary_union

from gval import CatStats

Create Subsampling DataFrame

Let’s open up a geopackage with polygons to use for subsampling:

[2]:
data_path = './'
polygons_continuous = gpd.read_file(f'{data_path}/subsample_continuous_polygons.gpkg')

To use this DataFrame as a subsampling DataFrame let’s use create_subsampling_df:

[3]:
polygons_continuous.gval.create_subsampling_df(subsampling_type=["include", "include"], inplace=True)
polygons_continuous
[3]:
geometry subsample_type subsample_id
0 POLYGON ((-97.72375 29.56328, -97.72304 29.558... include 1
1 POLYGON ((-97.71604 29.55635, -97.71587 29.551... include 2

The DataFrame above has a geometry column, a subsample type with the value of “include” (calculating data within the geometry) or “exclude” (remove all data contained within the geometry), and subsample_id.

There is also the ability to add subsampling_weights:

[4]:
polygons_continuous = polygons_continuous.gval.create_subsampling_df(subsampling_type=["exclude", "exclude"], subsampling_weights=[2, 1])
polygons_continuous.explore()
[4]:
Make this Notebook Trusted to load map: File -> Trust Notebook

Continuous Compare Subsampling

[5]:
cds = rxr.open_rasterio(f'{data_path}/candidate_continuous_1.tif', band_as_variable=True, mask_and_scale=True)
bds = rxr.open_rasterio(f'{data_path}/benchmark_continuous_1.tif', band_as_variable=True, mask_and_scale=True)
[6]:
cds.gval.cont_plot(title="Candidate Map")
[6]:
<matplotlib.collections.QuadMesh at 0x7fa3aac9af50>
_images/SphinxSubsamplingTutorial_12_1.png
[7]:
bds.gval.cont_plot(title="Benchmark Map")
[7]:
<matplotlib.collections.QuadMesh at 0x7fa3aaa6d180>
_images/SphinxSubsamplingTutorial_13_1.png

Let’s use this newly created subsampling dataframe on a continuous comparison. For each subsample an agreement map is created and then used to calculate continuous statistics. There are four subsampling-average types:

  1. full-detail: reports all metrics calculated on separate bands and subsamples.

  2. band: reports all metrics on subsamples with band values averaged.

  3. subsample: reports all metrics on bands with subsample values averaged.

  4. weighted: reports all metrics on bands with subsample values averaged and scaled by weights.

Full-Detail

[8]:
ag, met = cds.gval.continuous_compare(benchmark_map=bds,
                                      metrics=["mean_percentage_error"],
                                      subsampling_df=polygons_continuous,
                                      subsampling_average="full-detail")
met
[8]:
subsample band mean_percentage_error
0 1 1 0.125928
1 1 2 -0.111844
2 2 1 0.167116
3 2 2 -0.143187

The agreement maps for each subsample will look as follows:

[9]:
ag[0].gval.cont_plot(title="Agreement Map 1st Exclusion")
[9]:
<matplotlib.collections.QuadMesh at 0x7fa3aa732590>
_images/SphinxSubsamplingTutorial_18_1.png
[10]:
ag[1].gval.cont_plot(title="Agreement Map 2nd Exclusion")
[10]:
<matplotlib.collections.QuadMesh at 0x7fa3aa6e5cc0>
_images/SphinxSubsamplingTutorial_19_1.png

Band

[11]:
ag, met = cds.gval.continuous_compare(benchmark_map=bds,
                                      metrics=["mean_percentage_error"],
                                     subsampling_df=polygons_continuous,
                                     subsampling_average="band")
met
[11]:
subsample band mean_percentage_error
0 1 averaged 0.007042
1 2 averaged 0.011964

Subsample

[12]:
ag, met = cds.gval.continuous_compare(benchmark_map=bds,
                                      metrics=["mean_percentage_error"],
                                     subsampling_df=polygons_continuous,
                                     subsampling_average="subsample")
met
[12]:
subsample band mean_percentage_error
0 averaged 1 0.146522
1 averaged 2 -0.127515

Weighted

[13]:
ag, met = cds.gval.continuous_compare(benchmark_map=bds,
                                      metrics=["mean_percentage_error"],
                                      subsampling_df=polygons_continuous,
                                      subsampling_average="weighted")
met
[13]:
subsample band mean_percentage_error
0 averaged 1 0.083952
1 averaged 2 -0.037281

If one desires to have only one subsample with all of the exclusions combined use Shapely’s unary_union:

[14]:
combined_df = gpd.GeoDataFrame(geometry=[unary_union(polygons_continuous['geometry'])],
                               crs=polygons_continuous.crs)
combined_df.gval.create_subsampling_df(subsampling_type=["exclude"], inplace=True)
ag, met = cds.gval.continuous_compare(benchmark_map=bds,
                                      metrics=["mean_percentage_error"],
                                      subsampling_df=combined_df,
                                      subsampling_average="full-detail")
met
[14]:
subsample band mean_percentage_error
0 1 1 0.133122
1 1 2 -0.117482
[15]:
ag[0].gval.cont_plot(title="Agreement Map Exclusion")
[15]:
<matplotlib.collections.QuadMesh at 0x7fa3aa4e0820>
_images/SphinxSubsamplingTutorial_28_1.png

Categorical

[16]:
# Subsampling DF
polygons_categorical = gpd.read_file(f'{data_path}/subsample_two-class_polygons.gpkg')
polygons_categorical.gval.create_subsampling_df(subsampling_type=["include", "include"], inplace=True)
polygons_categorical.explore()
[16]:
Make this Notebook Trusted to load map: File -> Trust Notebook
[17]:
# Candidate and Benchmark
cda = rxr.open_rasterio(f'{data_path}/candidate_map_multiband_two_class_categorical.tif', mask_and_scale=True)
bda = rxr.open_rasterio(f'{data_path}/benchmark_map_multiband_two_class_categorical.tif', mask_and_scale=True)
[18]:
cda.gval.cat_plot("Candidate Map")
[18]:
<matplotlib.collections.QuadMesh at 0x7fa399f6e290>
_images/SphinxSubsamplingTutorial_32_1.png
[19]:
bda.gval.cat_plot("Benchmark Map")
[19]:
<matplotlib.collections.QuadMesh at 0x7fa38a781ba0>
_images/SphinxSubsamplingTutorial_33_1.png

Just as done earlier in continuous comparison, the following performs subsampling on categorical comparisons.. For each subsample an agreement map, a cross-tabulation table, and a metric table is created. There are three subsampling-average types:

  1. full-detail: reports all metrics calculated on separate bands and subsamples.

  2. band: reports all metrics on subsamples with band values averaged.

  3. subsample: reports all metrics on bands with subsample values averaged.

Full-detail

[20]:
ag, ctab, met = cda.gval.categorical_compare(benchmark_map=bda,
                                             metrics="all",
                                             positive_categories=[2],
                                             negative_categories=[0, 1],
                                             subsampling_df=polygons_categorical,
                                             subsampling_average="full-detail")
met.transpose()
[20]:
0 1 2 3
band 1 1 2 2
subsample 1 2 1 2
fn 201953.0 182389.0 68239.0 58638.0
fp 761242.0 397531.0 43646.0 65967.0
tn 762262.0 398338.0 1479858.0 729902.0
tp 201936.0 181301.0 335650.0 305052.0
accuracy 0.50026 0.499879 0.94195 0.892541
balanced_accuracy 0.500157 0.499506 0.901198 0.877941
critical_success_index 0.173316 0.238171 0.749997 0.70999
equitable_threat_score 0.000104 -0.000426 0.696008 0.602268
f_score 0.29543 0.384715 0.857141 0.830402
false_discovery_rate 0.790344 0.686781 0.115071 0.1778
false_negative_rate 0.500021 0.501496 0.168955 0.161231
false_omission_rate 0.209448 0.31407 0.044079 0.074363
false_positive_rate 0.499665 0.499493 0.028648 0.082887
fowlkes_mallows_index 0.323765 0.395147 0.857564 0.830444
matthews_correlation_coefficient 0.000255 -0.000918 0.821398 0.751849
negative_likelihood_ratio 0.999373 1.001976 0.173938 0.175802
negative_predictive_value 0.790552 0.68593 0.955921 0.925637
overall_bias 2.384759 1.591553 0.93911 1.020152
positive_likelihood_ratio 1.000628 0.99802 29.0084 10.119461
positive_predictive_value 0.209656 0.313219 0.884929 0.8222
prevalence 0.209552 0.313645 0.209552 0.313645
prevalence_threshold 0.499922 0.500248 0.156594 0.239171
true_negative_rate 0.500335 0.500507 0.971352 0.917113
true_positive_rate 0.499979 0.498504 0.831045 0.838769

The agreement map will look as follows:

[21]:
ag[0].gval.cat_plot(title="Agreement Map 1st Inclusion")
[21]:
<matplotlib.collections.QuadMesh at 0x7fa39a335600>
_images/SphinxSubsamplingTutorial_38_1.png
[23]:
ag[1].gval.cat_plot(title="Agreement Map 2nd Inclusion")
[23]:
<matplotlib.collections.QuadMesh at 0x7fa3a6fa5d80>
_images/SphinxSubsamplingTutorial_39_1.png

Band

[24]:
ag, ctab, met = cda.gval.categorical_compare(benchmark_map=bda,
                                             metrics="all",
                                             positive_categories=[2],
                                             negative_categories=[0, 1],
                                             subsampling_df=polygons_categorical,
                                             subsampling_average="band")
met.transpose()
[24]:
0 1
subsample 1 2
band averaged averaged
fn 270192.0 241027.0
fp 804888.0 463498.0
tn 2242120.0 1128240.0
tp 537586.0 486353.0
accuracy 0.721105 0.69621
balanced_accuracy 0.700678 0.688723
critical_success_index 0.333352 0.408399
equitable_threat_score 0.192488 0.211025
f_score 0.500021 0.579948
false_discovery_rate 0.599556 0.487969
false_negative_rate 0.334488 0.331363
false_omission_rate 0.107547 0.176026
false_positive_rate 0.264157 0.29119
fowlkes_mallows_index 0.516237 0.585118
matthews_correlation_coefficient 0.342864 0.356123
negative_likelihood_ratio 0.454564 0.467492
negative_predictive_value 0.892453 0.823974
overall_bias 1.661934 1.305853
positive_likelihood_ratio 2.519382 2.296222
positive_predictive_value 0.400444 0.512031
prevalence 0.209552 0.313645
prevalence_threshold 0.38651 0.397562
true_negative_rate 0.735843 0.70881
true_positive_rate 0.665512 0.668637

Subsample

[25]:
ag, ctab, met = cda.gval.categorical_compare(benchmark_map=bda,
                                             metrics="all",
                                             positive_categories=[2],
                                             negative_categories=[0, 1],
                                             subsampling_df=polygons_categorical,
                                             subsampling_average="subsample")
met.transpose()
[25]:
0 1
subsample averaged averaged
band 1 2
fn 384342.0 126877.0
fp 1158773.0 109613.0
tn 1160600.0 2209760.0
tp 383237.0 640702.0
accuracy 0.500117 0.92339
balanced_accuracy 0.499837 0.893723
critical_success_index 0.198944 0.730401
equitable_threat_score -0.000122 0.657571
f_score 0.331866 0.844199
false_discovery_rate 0.751469 0.146089
false_negative_rate 0.50072 0.165295
false_omission_rate 0.248774 0.054299
false_positive_rate 0.499606 0.04726
fowlkes_mallows_index 0.352259 0.844253
matthews_correlation_coefficient -0.000282 0.793505
negative_likelihood_ratio 1.000651 0.173494
negative_predictive_value 0.751226 0.945701
overall_bias 2.008927 0.977509
positive_likelihood_ratio 0.999348 17.662067
positive_predictive_value 0.248531 0.853911
prevalence 0.248653 0.248653
prevalence_threshold 0.500082 0.192211
true_negative_rate 0.500394 0.95274
true_positive_rate 0.49928 0.834705

As done earlier, if one wants to combine the inclusion of multiple polygons use unary_union:

[26]:
combined_df = gpd.GeoDataFrame(geometry=[unary_union(polygons_categorical['geometry'])],
                               crs=polygons_continuous.crs)
combined_df.gval.create_subsampling_df(subsampling_type=["include"], inplace=True)
ag, ctab, met = cda.gval.categorical_compare(benchmark_map=bda,
                                             metrics="all",
                                             positive_categories=[2],
                                             negative_categories=[0, 1],
                                             subsampling_df=combined_df,
                                             subsampling_average="full-detail")
met.transpose()
[26]:
0 1
band 1 2
subsample 1 1
fn 384342.0 126877.0
fp 1158773.0 109613.0
tn 1160600.0 2209760.0
tp 383237.0 640702.0
accuracy 0.500117 0.92339
balanced_accuracy 0.499837 0.893723
critical_success_index 0.198944 0.730401
equitable_threat_score -0.000122 0.657571
f_score 0.331866 0.844199
false_discovery_rate 0.751469 0.146089
false_negative_rate 0.50072 0.165295
false_omission_rate 0.248774 0.054299
false_positive_rate 0.499606 0.04726
fowlkes_mallows_index 0.352259 0.844253
matthews_correlation_coefficient -0.000282 0.793505
negative_likelihood_ratio 1.000651 0.173494
negative_predictive_value 0.751226 0.945701
overall_bias 2.008927 0.977509
positive_likelihood_ratio 0.999348 17.662067
positive_predictive_value 0.248531 0.853911
prevalence 0.248653 0.248653
prevalence_threshold 0.500082 0.192211
true_negative_rate 0.500394 0.95274
true_positive_rate 0.49928 0.834705
[27]:
ag[0].gval.cat_plot(title="Agreement Map Inclusion")
[27]:
<matplotlib.collections.QuadMesh at 0x7fa3a1331e40>
_images/SphinxSubsamplingTutorial_46_1.png