Continuous Statistics Functions
Continuous Statistics Functions From Error Based Agreement Maps.
- gval.statistics.continuous_stat_funcs.coefficient_of_determination(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
Compute coefficient of determination (R2).
Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.
- Returns:
R2 – Coefficient of determination.
- Return type:
Number
References
- gval.statistics.continuous_stat_funcs.mean_absolute_error(error: DataArray | Dataset) Number
Compute mean absolute error (MAE).
Either error or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
- Returns:
MAE – Mean absolute error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.mean_absolute_percentage_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
Compute mean absolute percentage error (MAPE).
Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.
- Returns:
MAPE – Mean absolute percentage error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.mean_normalized_mean_absolute_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
Compute mean normalized mean absolute error (NMAE).
Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.
- Returns:
NMAE – Normalized mean absolute error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.mean_normalized_root_mean_squared_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
Compute mean normalized root mean squared error (NRMSE).
Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.
- Returns:
mNRMSE – Mean normalized root mean squared error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.mean_percentage_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
Compute mean percentage error (MPE).
Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.
- Returns:
MPE – Mean percentage error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.mean_signed_error(error: DataArray | Dataset) Number
Compute mean signed error (MSiE).
Either error or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
- Returns:
MSiE – Mean signed error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.mean_squared_error(error: DataArray | Dataset) Number
Compute mean squared error (MSE).
Either error or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
- Returns:
MSE – Mean squared error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.range_normalized_mean_absolute_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
Compute range normalized mean absolute error (RNMAE).
Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.
- Returns:
rNMAE – Range normalized mean absolute error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.range_normalized_root_mean_squared_error(error: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
Compute range normalized root mean squared error (RNRMSE).
Either (error and benchmark_map) or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.
- Returns:
rNRMSE – Range normalized root mean squared error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.root_mean_squared_error(error: DataArray | Dataset) Number
Compute root mean squared error (RMSE).
Either error or (candidate_map and benchmark_map) must be provided.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
- Returns:
RMSE – Root mean squared error.
- Return type:
Number
References
[1]
- gval.statistics.continuous_stat_funcs.symmetric_mean_absolute_percentage_error(error: DataArray | Dataset, candidate_map: DataArray | Dataset, benchmark_map: DataArray | Dataset) Number
Compute symmetric mean absolute percentage error (sMAPE).
Both candidate_map and benchmark_map must be provided. error can be provided to avoid recomputing it.
- Parameters:
error (Union[xr.DataArray, xr.Dataset]) – Candidate minus benchmark error.
candidate_map (Union[xr.DataArray, xr.Dataset]) – Candidate map.
benchmark_map (Union[xr.DataArray, xr.Dataset]) – Benchmark map.
- Returns:
sMAPE – Symmetric mean absolute percentage error.
- Return type:
Number
References
[1]